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Abstract 

In this report, advanced forecasting algorithms for both the electricity load, PV generation and heat 

demand of the local energy communities (LECs) are described. The expected building energy 

management system for the LECs resources optimization would leverage this short term forecast for the 

management of all energy-related services. Accordingly, advanced AI based forecast algorithms with two 

different time steps of 1-hour ahead with 10-minutes resolution and 24-hours ahead with 1hour 

resolution are provided for the prediction of the PV generation, building loads and heat demands of the 

LEC demonstrated using HSB Living Lab (HSBLL), Chalmers University of Technology Sweden. In principle, 

observed weather conditions, and historical data (outputs of PV, Electricity, and heat loads), from previous 

hours were used to forecast for an hour and 24-hours ahead. 

Developing the machine learning models for the prediction of stochastic entities such as load demand 

and PV production requires historical data for a period to provide trends and patterns. The measurement 

data for this project is collected from Chalmers HSBLL building, while weather related data are retrieved 

from a Numerical Weather Prediction (NWP) model. For each forecasting algorithm tested based on the 

stated data, an individual forecasting method and performance optimization concept applied for the 

prediction is presented. The forecast for short term and very short term (1-hour ahead with 10 minutes 

resolution) are based on Long Short-Term Memory (LSTM) architecture while the 24-hours ahead with 

1hour resolution is on Gated Recurrent Unit (GRU) and ConvLSTM – a combination of convolutional neural 

networks and LSTM.  

The results of the best performing model showed an accuracy of 97.29% when compared with the actual 

data. The models were further validated and compared with the other state-of-art methods, hence the 

justification for their selection for deployment in GENTE project. Furthermore, the realization and future 

exploitation of the forecast system is briefly described. The presented forecast methods utilized 

predictions on weather variables instead of their real-time measurements. Therefore, the accuracy of the 

weather predictions highly influenced the predictions made especially that of the PV. This implies that the 

results of this forecasts are more viable in real time exploitation where weather variables may not be 

required as factor. 
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1. Introduction 

1.1 Scope of the report 

One of the main objectives of GENTE is to develop forecast algorithms that support distributed control 

for optimal operation of buildings and LEC optimisation for flexibility and grid support services. These 

user-oriented solutions are geared towards communities and community managers` energy-resource 

management. Proper understanding of energy production and consumption behaviours has numerous 

advantages to participants in smart grids, such as manufacturers, renewable energy generators, utility 

companies, prosumers, and consumers especially. Part of the advantages range from tracking the loads 

relative to proper balancing, real-time energy pricing opportunity, and efficient energy management.  

This report addresses forecasting both from the demand and supply point of view to provide required 

energy flexibility. The local energy community proposed by GENTE is expected to generate its own energy, 

preferably from renewable sources, and as well supply energy to the members of the community. So, 

energy generation and electricity/heat demand forecast are pivotal to proper planning and management 

of such a project. However, forecasting complex real-world problems like PV and electricity/heat demand 

with linear models like autoregressive (AR), autoregressive moving average (ARMA), autoregressive 

integrated moving average (ARIMA), as well as ARIMA with seasonality component (SARIMA) etc. is always 

difficult and yield less reliable results. Obviously, such types of models cannot determine non-linear 

relationships in complex data [1] like that of PV generation and power demand, therefore complex models 

[2, 3] with high computation and inference capacity like neural networks are advantageous in this type of 

problem. 

In contrast to statistical models, neural network models formulate a model based on features learned 

from existing data and this dependency makes it data-driven, self-adaptive and a preferred choice as far 

as time series forecasting and Big Data is involved. Neural networks are preferable though not without 

their own inherent limitations. Importantly, learning of arbitrary complex mapping from inputs to outputs 

has become research focus recently with significant performance improvement recorded, yet a huge gap 

still exists between the methods of deployment and implementation environment. Some of these gaps 

include: the proper ways to capture dominant factors in the data to be learned; how to reduce the size of 

the model, and increase its computational speed; and finally, how to determine model parameters 

selection etc. Basically, these are the major areas this proposed forecast model aims to optimize. 

The forecast results of this deliverable will be input to the building energy management system (BEMS) 

developed in Task 6.2 and 6.3 of the WP6 to achieve “building control as a service”, wherein forecasts 

would be relied upon for real-time controls in the building facilities, especially the heap pump. The 

reported forecast is for short-term operational planning of EMSs, i.e.  1 hour and daily. However, 

algorithms adjustment can be made according to the data availability and required complexity if the EMS 

is intended to be used for long term operation energy management or planning like yearly or triannual. 
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1.2 Purpose of forecasting 

Research published so far has shown that having a prior knowledge of energy demand and production is 

instrumental in optimal energy management, especially as it relates to striking a balance between the 

energy produced at a given time and the energy consumed, resulting to a reduced cost of power reserve 

and battery storage. The emergence of smart energy technologies like artificial intelligence and Internet 

of Energy have made forecasting less complex. Forecasts performed using artificial intelligence 

algorithms can be easily integrated into Local Energy Communities (LECs) services like energy 

optimisation, and control strategies in the areas of peak load control through heat-pumps and other 

power consuming appliances in buildings. With accurate forecasts, there will reduction in both 

operational and maintenance costs, increase in reliability of power supply and delivery system, and an 

opportunity for future expansion on the part of energy suppliers. Based on this, forecasts reported here 

are on an hour with 10mins resolution and 24hrs with 1hour resolution. The chosen forecast horizon and 

resolution is best suited for real time control, ramp rate control, variability management as well as 

demand response scheduling. 

1.3 Deliverable structure 

This report is structured in five sections. In addition to this introduction, the outline of the sections is 

described as below. 

Section 2 focuses on the PV generation forecast where first the data measurement accumulation and PV 

sites are described, then a literature review and description on methodologies, forecast horizon and 

algorithms of PV generation prediction is provided. Thereafter, the forecast models for short term, 

medium term and very short term are presented and the results of the proposed models are validated 

and compared with state-of-art forecasting techniques.  

In section 3 the load forecast methodology for the three mentioned forecast horizons is described and a 

comparison with other forecasting techniques is presented. 

Later, section 4 analyses and discusses extensively the results obtained from forecast methods applied 

in the project. It also outlines the challenges and approach that will be followed for the realization and 

exploitation of the forecasting in the optimization of building energy management systems of WP6.2.  

Section 5 describes the model exploitation for the effective deployment, including the software 

requirements, dataset description, and model compilation and evaluation.  

Finally, section 6 concludes the report with the main conclusion and suggests the future research focus. 
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2. Existing Forecast Efforts   

2.1 PV generation forecast 

Various methods [4-6] have been deployed in forecasting PV productions. A sizeable number of these 

models are state-of-the-art forecast models. While some of these methods are statistical based others 

are based on either a physical approach or artificial intelligence. Statistical approaches usually depend on 

time series data of measured parameters to learn its present trends or patterns. Physical approaches 

depend on satellite images and numerical weather predictions (NWP). [5] for instance, applied a stack of 

neural network models to predict solar irradiance values based on weather patterns.  

Smart grid distributed networks, globally embraced in recent times for energy production, transmission, 

and distribution, come with challenges and opportunities. Part of the challenges is the inability to 

accommodate the voltage fluctuations resulting from large amounts of solar PV [7]. Solar PV generation 

is most often paired with energy storage system, but an inability to manage those storage systems poses 

a challenge, hence, need for accurate forecast to maximize their economic returns. Therefore, the 

forecast results in this study are used in the energy management system (EMS) optimization to achieve 

electricity load and heat flow balancing and control operations. For instance, set points for the 

charging/discharging of controllable loads such as energy storage (ES) can be fixed if the expected energy 

production and consumption for the building is known. More explanation on the contributions of energy 

forecasting within GENTE is made in chapter 5, where forecast models’ integration to EMS is detailed.  In 

energy markets, forecast horizon and resolution may change significantly from one application to the 

other, hence, the justification for short term (an hour and a day ahead) and medium-term (24hrs ahead) 

forecasting implemented using neural networks algorithm with multivariate time series dataset.  

Renewable energy sources (RESs) like PV generation cannot be precisely planned beforehand due to their 

stochastic nature. This arises from the fact that PV generation is highly dependent on meteorological 

factors [8]. The power output of a PV plants fluctuates along with the intensity of solar radiation which 

has random characteristic based on the geographical location, weather conditions, solar hour angle and 

seasons. If these meteorological factors are collected over time across different seasons of the year as 

historical data and properly trained with an intelligent algorithm like neural networks, perhaps 

predictions of possible outputs ahead can be made. One major gap in the existing models addressed in 

the developed forecast model reported here is the adaptability of the model to different datasets. Figure 

1 and 2 showed the PV production distribution in HSB Living Lab (HSBLL) used as a test site for this 

forecasting and its dependent variables distribution respectively. HSBLL is a 29-bed apartment in a 

student community of Chalmers University of Technology, Sweden equipped with 18kWp PV system. 

While Figure 1 shows the PV productions patterns across different seasons of the year, Figure 2 shows 

the variability of meteorological variables against the PV production. 
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Figure 1. PV Output structure sampled over an hour in a 1-year period 

 

Figure 2. Distribution of the input variables over a period of 1 year 
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2.2 Electricity Load demand forecast 

Rapid technological growth in the energy industry has made energy management an interesting research 

area due to the insight it provides in terms of individual loads i.e., on a per-customer level. Proper 

planning and management of energy requires understanding of energy consumption behaviours to keep 

track of consumers’ load. Though electricity demand behaviour at any given instance is perceived to be 

dynamic and nonlinear, hence, keeping track of consumption profile over time can be extremely helpful 

in terms of energy planning on the part of suppliers and consumers alike.  It will make the amount of 

energy delivered per unit generated to be easily managed in smart grid context. This will in turn reduce 

the fuel needs and carbon emissions on the part of energy suppliers. Interestingly, energy generation 

follows the   consumption demands, which is a time-varying factor, and one prerequisite of grid stability 

is consumption and generation balancing. This implies that both generation and consumption should be 

observed from time to time to ensure proper balancing. Consequently, historical load data is leveraged 

in making load demand projections for integrated resource planning and optimization. Figure 3 shows 

the correlation between the targeted variable (electricity load) and some variables including calendar 

variables that influences electricity consumption. This correlation test result showed that load is strongly 

correlated with the previous 24hrs and 168hrs loads, then followed by the hour of the day.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Heat Map of Correlation Test on Load Demand 
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To achieve a state-of-art power consumption forecast model, numerous deep learning techniques [2, 3, 

9] had been deployed in the processes of problem formulation, data transformation to supervised 

learning, and neural networks architecture building. [10] used feature encoding method on a deep 

reinforcement learning algorithm for inputting of data into the neural network layers. Nonlinear 

transformation defined by this encoder and decoder method can be viewed as an advanced feature 

extractor capable of preserving the hidden abstractions and invariant structures in input.  

2.3 Thermal Load demand forecast 

Building heating forecast research is very popular these days considering its importance for optimal 

energy planning and management. Several efforts are being made to address the flexibility gap between 

the use of district heating systems and heat pumps in buildings. These efforts are majorly centred on 

making forecasts and using the results of these forecasts in managing the heat demands. However, data-

driven forecast methods are becoming a fulcrum of buildings thermal load forecasting and short-term 

forecasting have shown high performance in many cases. To achieve a model with high performance, 

some previous research efforts have paired both linear and nonlinear models. For instance, [11] 

integrated machine learning models for improved training mechanisms, higher accuracy, and short 

learning time. Some important variables such as seasonality (calendar), occupancy, weather, and 

consumption behaviours can be co-opted while making forecasts in a district heating system.  

2.4 Data Collection/Measurement  

Table 1 showed the PV data structure from the demonstration site located at Chalmers campus shown in 

Figure 4. The HSBLL building has dishwasher, washing machines, tumbler dryer, EV charging stations, two 

air-to-water heat pumps (Energy Save AWH 9kW-V6), and 18 kW of solar PV capacity, installed on the 

rooftop of the building.  Observations on both the electricity load, heat load and PV production were 

made on hourly basis and the output captured the consumption behaviour and PV production pattern 

across different seasons of the year at different weather conditions. Chalmers campus is equipped with 

a central mini-SCADA system which can measure and store the PV output power at each of the PV sites 

and store such data in servers which can be accessed through the communication system. 

However, the fact that atmospheric climate changes across locations have significant effect on power 

consumption necessitated the collection of data from Alingsas HEM, which is considerably far away from 

HSBLL to investigate the effect of the climatic changes to the model performance.   

The forecasts are performed for the demonstration sites where historical data were collected, however, 

to better illustrate the results, this report presents the PV generation, load and heat demand forecast 

results of HSBLL, Chalmers.  



Advanced load and generation forecast  

 

  

15 

 

Table 1. PV data shape and structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. HSBLL and data collection sources 

 

2.4.1 Thermal load data 

Heat demand profile from small-scale energy system in HSBLL is used in training thermal demand 

forecast model. External and internal factors affecting the heat consumption of the buildings were 

considered as inputs to the model. Heat demand in HSB Living Lab emanating from hot water, floor, and 

space heating is provided by both district heating system and heat pumps. Heat demand in the context 

of this modelling is a direct function of the outdoor temperature, sun, and wind. Heating systems in HSBLL 

include: Two Air-to-water heat pumps (Energy Save AWH 9kW-V6), and three hot water storage tanks 

(MWT 500C.1). The heat historical data (psh) used for modelling the heat demand pattern is obtained 

from a log data from the GE meter at the HSB Living Lab.  
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From the heat transfer analysis carried out on this data as part of pre-modelling procedure, it was 

discovered that three major factors affect heat transfer in a building. These includes mass of the building, 

its specific heat capacity considering the heating systems, and variation in temperature. The first two 

factors can be easily determined except temperature variation. A test was further conducted to examine 

how these variables variations affects the heat transfer in the building. The analysis result shown in the 

Figure 5 showed that temperature variations followed a seasonality trend within the period of 365days 

i.e., 8760hours analysed. And the heat demand is lowest between 3130hours to 5020hours because of 

significant increase in temperature. Further probe showed these hours fall within the summer period. 

Figure 5. Temperature Variations in HSBLL over the period of 430days 

 

2.4.2 Weather Variables 

The meteorological data used for the PV forecasting is acquired from an API of Rebase Energy [12]. These 

6 post-processed variables are described below:  

● Cloud Cover: the fraction of the sky obscured by clouds on average when observed from a 

particular location. It is measured in Okta. On the average, the global is around 0.68 on clouds 

optical depth larger than 0.1, and lower than 0.56 with optical depth larger than 2. Cloud cover 

fraction (0-1) derived from Total cloud cover (CLCT) in percent (%). 

● Pressure Reduced MSL: Pressure at mean sea level pressure in Pascals (Pa) derived from Pressure 

in Pascals (Pa) reduced to mean sea level (PMSL). 

● Relative Humidity: Relative humidity in percent (%) at 2 meters above the surface 

● Solar Downward Radiation: Surface solar radiation in Watts per square meter (W.m-2) derived 

from Net short wave radiation flux (m) (at the surface) in Watt per square meter (W.m-2). 

● Temperature: Temperature at 2m in degrees Celsius (°C) derived from Temperature. 
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● Wind Direction: Wind direction at 10m (°) in degrees (°) derived from Zonal wind in meters per 

second (m.s-1), at several heights (U) and Meridional wind in meters per second (m.s-1), at several 

heights (V). 

● Wind Speed: Wind speed at 10m in meters per second (m.s-1) derived from Zonal wind in meters 

per second (m.s-1), at several heights (U) and Meridional wind in meters per second (m.s-1), at 

several heights (V).  

2.5 PV generation forecast approach 

The two major approaches for PV plant output forecast are indirect and direct forecasts.  Indirect forecast 

approaches predict the solar radiation of different scales and then joined it with other associated data to 

forecast the PV output power using the performance model of the plant while direct approaches directly 

forecast the PV output power using historical data such as PV output and associated meteorological data. 

Both methods directly or indirectly depend on weather related factors like solar irradiance, temperature, 

wind speed and direction etc. In recent times, PV forecast has focused on using solar irradiance for the 

prediction of PV power plant output and have also been applied in the areas of agriculture and climate 

change research [13, 14]. However, in this report, a holistic review of other meteorological factors was 

made and integrated in the forecast. GENTE aims to embed the solar generation forecast and other 

similar forecasts of the work package 6.1 in the EMS’s optimization and control strategies being developed 

for LECs, therefore, the PV power output of the PV plants are forecasted directly to make it as an 

applicable input to the EMS. 

Direct PV generation forecasting methods learn the behaviour of the PV output timeseries using historical 

data of the PV output itself and exogenous inputs and implement the acquired knowledge to predict 

future values. Many papers have proposed techniques for PV generation forecasting which can be broadly 

divided into three subgroups; mathematical based models, machine learning (ML) based techniques, and 

hybrid methods [15].  Most often, hybrid models combine a decomposition technique, an ML regression 

model, a feature selection method, and sometimes a meta-heuristic algorithm for optimization purposes. 

Mathematical based models are based on statistical approaches such as ARMA (Autoregressive moving 

average model) [16], ARIMA (Autoregressive integrated moving average model) and regression 

techniques i.e., regression trees [17] and identification-based model [18]. Mathematical based models 

have limitations in dealing with non-linear systems, therefore, machine learning based model such as 

Artificial Neural networks, support Vector machine (SVM), have been applied to PV generation forecasting. 

These methods have shown competent ability in predicting non-stationary data patterns, albeit large data 

sets are required for training stage. Some researchers have focused on combination of machine learning 

and indirect models, while others applied hybrid methods composed of mathematical and ML methods, 

ML based models and optimization algorithms. The latter uses optimization algorithms to optimize/tune 

the ML parameters. Generally, hybrid methods improve the prediction accuracy compared to single 

methods, however, impose higher computational complexity. 
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2.6 Artificial Intelligence Models 

Over the years, several machine learning models have been developed to solve real-world problems 

including regression problems like forecasting. These models leverage different methods and techniques 

for performance improvement. Unfortunately, as high performance is achieved in some of these models, 

the size of their trainable parameters increases, making them unsuitable for low-memory low-storage 

devices. However, several efforts are being made to reduce the size of models’ trainable parameters 

without necessarily reducing their performance. In the model reported in Table 2, efforts were made not 

only in reducing their size so it can be deployed in low-energy low-memory devices but ensure their 

inference time is significantly reduced. This concept of model size reduction should be an interesting one 

to GENTE project since there is likelihood of deployment in low-energy low-memory devices for the LECs. 

Juxtaposing the percentage of error of these state-of-the-art models as shown in Table 3 to their sizes, it 

is obvious that additional efforts is required to further reduce both the model size and error. This is part 

of the significant achievements of the developed forecast model reported here. 

Table 2 State-of-the-art Artificial Intelligence Models  

Model Parameters Size Error-5 (%) 
Training 

Time 

Inference 

Time 

ENet [19] 0.37 M 0.7 MB - 15mins 383ms 

LEDNet [20] 1.856 M 3.8 MB - - - 

SegNet [21] 29.46 M 56.2 MB - 37mins 286ms 

AlexNet [22] 60 M 232 MB 19.7 7,920mins - 

VGG16 [23] 138 M 528 MB 10.4 - - 

SqueezNet [24] 0.66 M 4.8 MB 19.7 - - 

ResNet152 [25] 232 M 60 MB 6.7 - - 

GoogleNet [26] 6.8 M  28 MB 6.7 - - 
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3. Methodology 

3.1 Data Pre-processing 

The historical data from HSBLL acquired over the period 1year was cleaned, and imputation method used 

to fill all missing and corrupted values using a day-wise Last Observation Carried Forward (LOCF) 

technique. This simply means carrying an observation from the same time the previous day. In a time-

series data of this nature with seasonality trend, other methods like linear interpolation, seasonal 

adjustment + linear interpolation could also be applied. 

 From Figure 6, it can be noticed that solar downward radiation seems to have a somewhat gaussian 

distribution look whereas the rest of the variables considered were completely skewed (i.e., non-

symmetric), necessitating thorough cleaning, adequate data normalization and standardization before 

modelling. Exploratory analysis shown in heatmap of Figure 6 further showed that PV output expected to 

be predicted has strongest correlation with Solar downward radiation with a factor of 0.9, followed by 

relative humidity and cloud cover respectively. Therefore, further investigation was carried out to 

determine the extent each input variable affects the outcome of the prediction result of the PV output. 

Figure 6. Correlation Distribution of PV Forecast Variables 

 

Data preprocessing stage is an important stage of AI-based modelling because it transforms the raw data 

into efficient format to enhance the performance of ML algorithms. Our data preprocessing involves two 

steps of data cleaning and normalization. The cleaning step involves handling of missing data and noisy 
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data. There were large intervals of missing data in the dataset, thus, they were handled by replacing them 

with NaN values which the algorithm would ignore, rather than interpolating. The noisy data and outliers 

are handled by omitting data larger than the maximum production. Furthermore, in some intervals the 

data were repetitive or oscillating in a small interval, these data were replaced with NaN values as well. 

To complete the data preprocessing, the time series were scaled between -1 and 1with the equation (2) 

and then the output of the neural networks is scaled back. 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 2
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
− 1  

(1) 

where, 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and minimum points of the time series, respectively. 

 

3.1.1 Data Normalization 

The fact that power generation and consumption is purely a stochastic process, predicting their patterns 

or modelling them is often a herculean task but not impossible. These type of timeseries have some 

hidden patterns which can be predicted. The variables in the dataset used for the modelling have 

difference scales and can sometimes go beyond zero like the meteorological data that constitutes about 

80% of the dataset. This called for data normalization carried out. In the implementation of these models, 

each n-sized window of training/testing data is normalized (i.e., making data at point i = 0 to always be 0) 

to reflect percentage changes the start of that window. However, for PV variables, the normalization range 

is -1 to +1. 

Normalization (Ni) = (
𝑃𝑖

𝑃𝑜
) – 1,        (2) 

De-Normalization (Pi) = 𝑃𝑜(𝑛𝑖 + 1),       (3) 

where N is normalized data and P is raw data. 

3.2 Data-driven approach 

For proper energy flexibility modelling, modelling of different spatial-temporal resolutions data of 

multiple energy carriers (heating, electricity) and energy generating system (PV) was carried out and their 

forecast results reported. A data-driven method was adopted where a persistence model was developed 

and used as a performance reference, and other neural networks approaches compared against this 

baseline model. Furthermore, comparative analysis of the performance of the models against state-of-

the-art models was performed. Data-driven models like neural network models formulate a model based 

on features learned from existing data making them most appropriate for time series forecasting. They 

are popular because of their high performance. The research gap in neural networks is centred on 

capturing the dominant factors in the data that need to be learned, as well as reducing the size of the 

model, increasing its inference time. Applying neural networks solution usually require training of large 

amounts of data. Given this, the resulting model size is usually big, requiring lengthy processing time.  
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Problem of large number of trainable parameters sometimes makes neural networks models consume 

much computer resources and unimplementable in low-processing devices. For an instance, [27] utilized 

539,001 trainable parameters for LSTM network for 24hours energy consumption forecast. It is not 

enough to have an accurate prediction model without the ability to operate on resource-constrained low-

power devices without latency problem. Experimentally illustrated facts have shown that the model size 

affects its inference time, so the smaller the model size the faster the computational speed [28, 29]. The 

availability of high-speed Graphics Processing Units (GPUs) in labs gives greater performance for models 

with larger trainable parameters, but these models are unusable in many real-world applications 

especially when implemented on resource-constrained devices. 

3.3 Machine learning models  

Aggregated Deep Belief Networks (DBNs) outputs using the Support Vector Machine (SVM) algorithm, 

reported in [7], outperformed benchmark methods such as Support Vector Regression (SVR), feedforward 

Neural Networks (FFNN), DBN and ensemble feedforward Neural Networks. The model compression 

algorithm implemented in the current work addresses the challenges of cost, power, heat, and other 

related issues, all of which will be elaborated in the methodology discussion. 

3.3.1 Horizon of forecasting 

Different categories of forecasting horizon are applicable to the 3 components of forecasts in this report. 

There are three major standards of forecasting: short-term forecasting (STF), medium-term forecasting 

(MTF) and long-term forecasting (LTF), though the fourth leg which is very-short-term forecasting is now 

added. However, the forecast reported here is based on short-term forecasting (STF) and medium-term 

forecasting (MTF). In short-term forecasting, forecast has a prediction period ranging from minutes to 

hour.  Short-term forecasting is used in real/near real time dispatch and control of power systems [30]. 

Short term forecasting time horizon is between 30-minutes to 360- minutes [8], however, one to several 

hours is regarded as a short-term forecasting horizon in some literature [8]. The prediction with this 

horizon is highly beneficial to economic load dispatch and energy management of power systems. 

Medium-term time horizon spans from 6 to 24-hours and is suitable for dispatch and planning of power 

systems [8, 30] [31]. Long term forecasting corresponds to prediction time intervals with more than 24-

hours [30]. Such forecasts are essential for long term planning.  

In GENTE, PV forecasts as well as load and heat forecasts will be used for both long term planning and 

short-term management of the resources of the LEC. It will aid in building of a demonstrator with load 

control with optimized environmental footprint, enabled by advanced control of heat pumps, and energy 

storage that can match a building's energy demand with local generation and energy storage devices in 

near real-time. Considering the different type of storages (thermal energy storages and battery energy 

resources) with different dynamics, near-real time and day-ahead energy management is developed. 

Consequently, based on the available data, PV generation, heat and load forecasts is performed for short-
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term i.e., 1-hour, and medium term i.e., 24-hours in advance. According to these forecast horizons, 

relevant features are identified and the associated measured historical data or predicted weather data 

are collected for the development of the machine learning based forecasting algorithms. 

3.3.2 Short-term (1 hour ahead) prediction 

Based on the feature engineering analysis conducted on variables influential to both energy generation 

and consumption using Pearson correlation coefficient test, the best features based on their coefficient 

factor were selected among the potential features as presented in Table 3. This prediction is based on 

two-step modelling chain, where the first step is the prediction of meteorological variables using 

Numerical Weather Predictions (NWP) [15]. 

 

Table 3. Features selected for 1-hour ahead PV generation prediction 

Feature Description 

Hour of day Numbers presenting the hour of the day  

Month of year Numbers presenting the month of the year  

Direct solar radiation Surface Solar radiation (W.m-2) 

Humidity Relative humidity at 2m (%) 

𝒚𝒕−𝟏 Last hour PV generation 

 

For the 1 hour ahead prediction various methods including neural networks like LSTM, ConvLSTM, and 

GRU were implemented, and the neural networks were selected as the ML algorithms.  The random forest 

regression (RF) method was selected rather than linear regression methods such as ARIMAX for 

comparison since it models the PV power generation as a multi-input-single-output system and can catch 

the nonlinearity of the PV generation. 

𝑥𝑛+1 = 𝐴𝑥𝑛 + 𝐵𝑢𝑛 + 𝐾𝑒𝑛 

𝑦𝑛 = 𝐶𝑥𝑛 + 𝐷𝑢𝑛 
 

(4) 

Where, 𝑢𝑛 is input vector, 𝑦𝑛 is the output vector, and 𝑥𝑛 is the state vector. To forecast the PV power 

generation in n-step head, the vectors of 𝐴, 𝐵, 𝐶, 𝐷, and 𝐾 should be identified [32]. 

3.3.1 Medium-term (24 hours ahead) prediction 

It is expected that a day-ahead prediction could be a useful input for scheduling of energy management 

systems, hence, predictions made from time step t+1 to t+24, at t = 1hr.  To achieve this type of prediction, 

two approaches can be used: use of previous 24hour data by resampling a minute-wise or hourly data to 

daily or doing a multistep hourly prediction for 24hours. The training data was resampled to daily, and a 

day previous PV output used as an input time series for t+1 prediction. Unfortunately, the historical data 

of the previous hours actual values are not always available for all timesteps of the 24-hour horizon. 

Similarly for the last hour of the horizon i.e., t+24 only the last predicted values are accessible, and no 

previous time step actual value is available.  

file:///C:/Users/JumpStart/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/GDMV0IOV/Soubdhan,%20T.,%20et%20al.,%20A%20robust%20forecasting%20framework%20based%20on%20the%20Kalman%20filtering%20approach%20with%20a%20twofold%20parameter%20tuning%20procedure:%20Application%20to%20solar%20and%20photovoltaic%20prediction.%20Solar%20Energy,%202016.%20131:%20p.%20246-259.
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Consequently, a multi-step ahead approach was followed in framing 24-hours ahead prediction 

problem. The input to Machine Learning algorithm is a time series which the forecasted values of the 

ML itself is used as the input for the next timesteps 

3.3.2 Algorithms and modelling 

As mentioned earlier, short term i.e., 1-hour, and medium term i.e., 24-hour is forecasts is performed in 

this GENTE work package. Since the available data/features in the realization of the forecast algorithm for 

each forecasting horizon is different, the most suitable Machine Learning method for forecasting them 

must be selected uniquely for every forecast horizon and time-step.  Importantly, several machine 

learning algorithms were tried using different supervised learning methods before settling for the 

selected ones used in the models for each forecast horizon presented in this report. 

3.3.3 Feature selection 

In this section initially potential features for the Machine Learning methods are identified and then the 

approach toward selecting them is described. The determining features for the outputs of forecasts 

reported here can be categorized in three groups: calendar features, meteorological features, and 

historical features. Calendar or time features including hour of day and month reflect the seasonality and 

the daily pattern of the PV output. Meteorological features such as downward solar radiation, 

temperature, humidity, wind direction and speed, affect the output power of the PV plant. Similarly, the 

previous timestep data of the PV output has shown to have high level correlation with the predicted 

sample, hence, the choice of imputation technique leveraged during data cleaning. 

In this project, the weather features are retrieved from rebase energy weather API (Application program 

interface) [12]. The API serves endpoints from different numerical weather predictions (NWPs) and 

reanalysis models. Based on the geographical coverage and resolution the MEPS NWPs are selected to 

retrieve the weather features. It should be noted that due to limited access and proximity of the PV sites 

to each other, the weather features are collected for a location in center of Chalmers University of 

Technology and used for all PV sites. Eight weather features including cloud cover, pressure, relative 

humidity, solar downward radiation, temperature, total perception, wind direction and wind speed are 

obtained by the NWP model and can be potential candidates for the neural networks. To determine the 

relationship between PV generation and the individual weather features, Pearson Correlation Analysis 

(PCA) were employed. PCA method evaluates the linear relationship between two variables by computing 

the correlation coefficient by (1) [33]:  

Pearson's linear correlation coefficient two variables, 𝑥 and y is defined as: 

𝑟𝑥,𝑦 =
∑ (𝑥𝑖 − 𝑥𝑖̅)

𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖̅)

[∑ (𝑥𝑖 − 𝑥𝑖̅)
2 ∑ (𝑦𝑖 − 𝑦𝑖̅)

2𝑛
𝑖=1

𝑛
𝑖=1 ]

1
2⁄
 

 

(5) 

Where 𝑥𝑖̅, 𝑦𝑖̅ and n are the mean and sample size, respectively, 𝑥𝑖 and 𝑦𝑖 are the individual sample points 

indexed by i. Values of the correlation coefficient can range from –1 to +1. A value of –1 indicates perfect 
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negative correlation, while a value of +1 indicates perfect positive correlation. A value of 0 indicates no 

correlation between the variables. The heat map of Figure 7 provides the correlation between PV 

generation and weather features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. correlation heat map of the data variables 

 

The heatmap clearly showed that solar radiation has the highest correlation followed by relative humidity. 

This pre-processing analysis is important because it changed the null hypothesis that cloud cover, wind 

speed and direction have greater correlations PV generation. From the autocorrelation analysis, it was 

noticed that the highest correlation of PV generation with solar irradiance occurred between the current 

time step and the 1-hour and 2-hour lagged points in time. Implying that these two-time delays (1 hour 

and two hour) can be potential features for the prediction. However, 24 hour and 48 hours were also 

considered based on the result of feature engineering carried out using Grid Search method to determine 

how these variables changes with PV output. Hour and month were selected as calendar features to show 

both daily and season patterns. 

From the Pearson correlation analysis, Table 4 showed the variables with their importance values and 

Figure 10 showed the bar chart. The result showed that wind direction and wind speed have little or no 

significance, hence, they were dropped in the modelling stage. 
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Table 4. Correlation Feature Selection 

Hour 

Feature: 0 

S. Radiation 

Feature: 1 

R. Humidity 

Feature: 2 

CloudCover 

Feature: 3 

Temp. 

Feature: 4 

W. Direction 

Feature: 5 

WindSpeed 

Feature: 6 

82.3590 28810.7816 2276.7948 442.3754 774.2654 6.7311 5.8159 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Bar Chart of the Input Features (x) vs. Correlation Feature Importance (y) 

 

The plot in figure 8 clearly shows 1, 2, 3 and 4 features are a lot more important than the other features. 

Consequently, 5 and 6 features were dropped because of their insignificance, since the larger the positive 

value, the larger the relationship, and, more likely, the feature should be selected for modelling. 

3.4 Model Configuration 

Designing a model to solve a regression problem like forecasting requires series of considerations like 

deployment environment, the size of dataset and how to make the model adaptable to a new dataset. 

Based on success recorded by neural networks algorithms in the past, LSTM, GRU and ConvLSTM became 

the choice. The next step after putting appropriate considerations onboard is the process of scanning the 

data to configure optimal parameters for the proposed model. This process can be done automatically 
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(grid searching) or manually (hyperparameter or optimization tuning). The architecture of the best 

performing network (LSTM) as shown in table 5 has 8 input dimensions with 1 output layer, 3 hidden 

layers. Also, the architecture of the combination of Convolutional Neural Network (CNN) and Long Sort-

Term Memory (LSTM) has similar configurations. While the input transformations and feature map 

extraction take place in the convolutional layers, the resulting out is convolve and read into LSTM units. 

Because the input data is a 1-D sequence, it was easy for the interpretation over the number of time 

steps. The LSTM has 3 hidden layers with 4 gates that handles updates and memory functions of the 

network. As the gates receives both the input (output from the last convolutional or hidden layer) 

obtained at previous time step (ht-1) and the related current time step (xt), they are concatenated to be 

used as input to the next time step. For the GRU, additional gate called reset gate is included and it 

regulates the relevance of past recollections, and the update gate.  

 
Table 5. Model Configuration and its parameters 

Models 
Configurations 

Layer (type) Output Shape Parameters 

LSTM 
LSTM, Dropout, dense and 

call-back 

8 input dimensions 

with 1 output layer 
43200 

GRU 
Module wrapper, dropout, 

dense 

8 input dimensions 

with 1 output layer 
124200 

ConvLSTM 
ConvLSTM2D, Flatten, 

LSTM, RepeatVector 

8 input dimensions 

with 1 output layer 

 

50176 

 

 

3.4.1 Feature Learning process 

Neural networks normally learn its features using either forward or backword propagation. But for the 

models implemented, backword propagation was used because it enabled error committed in the 

prediction (forward) phase to be injected into the network and the parameters (W and b) updated so they 

can perform better on the next iteration as shown in Figure 9. Once these parameters which can be 

regarded as the model coefficients are initialized using the activation function (ReLU), the algorithms will 

start learning the features in the data sequentially. While learning, it periodically optimizes these 

coefficients and return arrays of parameters which minimizes the error.   
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Figure 9. Structure of Neural Networks and its layers 

 

3.4.2 Model Regularization 

The need for regularization is to address challenges of overfitting and error generalization inherent in 

time domain neural networks. Problem with learned features is that they can be too specialized to the 

training data or overfit, and not generalize well to new examples. Dropout which has been a common 

technique in deep learning helps to block out random set of unit cells during model training. Network 

structure optimization and parameters tuning is carried out instead of grid searching because of the large 

dataset. A rectified linear unit (ReLU) is used for activation. ReLU is one of the most notable non-saturated 

activation functions. The ReLU activation function is defined as: ai, j, k = max (zi, j, k, 0), where zi, j, k is the 

input of the activation function at location (i, j) on the k-th channel. ReLU is a piecewise linear function 

that output the input directly if it is positive but prunes the negative part to zero if otherwise. 

On the hand, addressing the problems emanating from the non-stationarity of the variables used in the 

model necessitated data standardization and normalization. For the PV, the data was scaled between -1 

to 1 because the meteorological variables change rapidly with time, while electricity and heat load are 

scaled between 0 to 1 even though some of their variables are weather variables.  

3.4.3 Model Parameters 

Google Colab TPU and Keras® (one of the finest neural network APIs) with its backend TensorFlow were 

used as the development environment and programming language is python. Based on validation result, 

the model for each of the area of forecast carried out significantly outperformed the baseline model. As 

stated earlier, 3 neural networks algorithms with different model configurations and parameters were 

used for the 3 areas of forecasting carried out. For the LSTM model, a total of 250 neurons (100 at first 

layer, and 50 neurons at each hidden layer) and 1 in the output layer used for predicting PV generation, 

electricity load, and heat load in HSBLL. The first layer of the ConvLSTM architecture consists of a network 
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with filter output size of 64, kernel size of (1, 3), Dropout of 50% of the layers, Input shape of 2 time-steps 

with 8 features, Mean Square Error loss function and Adam version of stochastic optimization gradient. 

The model was fit for 20 training epochs at batch size of 64.  

3.5 Model Validation and Evaluation 

In this work, the final model is made to make predictions for new data with unknown outcome.  The model 

employs a novel moving Walk-forward validation approach as shown in Figure 10, (where the model 

makes a forecast for each observation in the test dataset one at a time by adding up the true observation 

for the current time step as part of the input for making prediction on the next time step) is used. Actual 

input data from previous hour and a day timesteps were used to make an hour and 24hrs ahead 

predictions respectively. This type of validation is crucial to enable model performance to be assessed by 

recursively augmenting the training data with recent observations and re-evaluating the model over 

extended horizon [34]. It is can as well be applied even when test data is not a representative sample of 

the entire dataset and are significantly different from data used for model training.  

During model training, it is expected that the error for the current state of the model must be estimated 

repeatedly. Adam version of stochastic gradient descent was used to optimize the mean squared error 

('MSE') loss function by estimating the training loss so that the weights can be updated to reduce the loss 

on the next evaluation. MSE is the default loss function for regression problems, and it is preferred 

mathematically under the inference framework of maximum likelihood if the target variable has Gaussian 

distribution. This type of models’ loss function makes the larger mistakes result into more error than 

smaller mistakes, meaning that the model is punished for making larger mistakes. 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Walk-forward Validation 
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4. PV, Load and Thermal Heat Demand at 
HSBLL 

4.1 Forecast Result Analysis on HSBLL Datasets 

As mentioned earlier, the forecasting reported here is demonstrated using two different datasets 

emanating from different locations. It is imperative to note that the result analysed so far only contain 

the testing done using HSBLL dataset. That of Alingsas HEM will be included in the comprehensive report. 

The performance evaluation metric for assessing forecasts is based on five major standard error 

measurements: Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE) and Coefficient of Determination (R2). These error metrics are 

the most suitable and commonly used metrics for PV, electricity, and heat load forecasting, and they are 

also widely applied in neural networks models evaluation. Secondly, both error metrics use the same 

scale as the measured data, which implies that the error is of the same unit with the predictions and can 

range from 0 to ∞.  

4.1.1 Root Mean Square Error (RMSE) 

 Root Mean Square Error (RMSE) is a popular quadratic scoring rule that measures the 

average magnitude of the error. It is the square root of the average of squared differences between 

prediction and actual observation. 

   𝑅𝑀𝑆𝐸 = √
1

𝑛
∑

𝑛

𝑖=1
(𝑥𝑖 − 𝑦𝑖)

2,      (6) 

where 𝑥𝑖  is the observed data, 𝑦𝑖  denotes the predicted data, 𝑒𝑖 is the arithmetic average of the 

absolute error, and 𝑛 is the number of observations. This takes the variation between the predicted and 

actual values, square it up due to positive and negative difference that may arise, and obtain the means 

to aggregate all the unseen data and finally square root it to counterbalance the square operations. 

4.1.2 Mean Absolute Error (MAE) 

 This type of error metrics also measures the average magnitude of errors in each set of 

predictions, without necessarily considering their direction. MAE is sometimes termed Mean Absolute 

Deviation (MAD) and it shows the magnitude of overall error in data points, in the cause of the forecast. 

It is the average over the test sample of the absolute differences between prediction and actual 

observation where all individual differences have equal weight. 

 𝑀𝐴𝐸 =
∑  ⃒  𝑥𝑖−𝑦𝑖 ⃒ 

𝑛
𝑖

𝑛
 =

∑  ⃒  𝑒𝑖 ⃒ 
𝑛
𝑖

𝑛
      (7) 
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where 𝑒𝑖 denotes the arithmetic average of the absolute error. This is also known as a scale-dependent 

accuracy measure, so it will be illogical to make comparisons between this metric and other series using 

different scales. The mean absolute error is commonly used for the measurement of forecast error in a 

time series analysis.  It is less susceptible to outliers compared to MAPE and RMSE. 

4.1.3 Mean Absolute Percentage Error (MAPE) 

 The mean absolute percentage error is the measure of the level of accuracy of a forecast system 

in terms of percentage. Mean absolute percentage error (MAPE) is commonly used as a loss function for 

regression tasks and model evaluation because of its interpretation in terms of relative error. It measures 

the forecast error and performs optimally if there are no extremes to the data (and no zeros). It can be 

calculated as the average absolute percent error for each time-period minus actual values divided by 

actual values. 

  M𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡

𝑛

𝑡=1
| x 100      (8) 

where n is the number of fitted points, and At is the actual value, while Ft is the forecast value. The 

summation for the absolute value is done for every forecasted point in time and divided by the number 

of fitted points n. This performance metric is independent of the scale of measurement, yet it is affected 

by data transformation. 

4.2 PV Hourly Forecast Analysis 

In analyzing the PV, all evaluation metrics were not utilized because several PV output time-steps have 

zero values at night hours, therefore normalized index such as MAPE was not included in the metrics of 

evaluation to avoid infinite values. From the models training loss shown in figure 11 (a), unstable training 

trajectory was experienced immediately after initialization of the model for training, which could be 

likened to overfitting in the training data, but the overall performance is good based on validation as 

highlighted in figure 11 (b). The model was validated with 7day i.e., 168hrs test dataset. The plots showed 

that the training error decreases sharply after commencement of training before it became almost linear 

because of the model’s complexity. From the result shown in Table 6, LSTM model outperformed others 

virtually in all metrics considered with least error, and with highest correlation between predicted and 

actual values. 
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Figure 11. (a) Training Loss on PV forecast 

 

 

 

 

 

 

(b) Model Prediction Error on PV forecast 

 

Table 6. Result of PV Forecast Evaluation across different metrics 

Models and their performances on PV Generation data 
 

LSTM GRU ConvLSTM 

MAE (kWh) 0.6662 0.6677 0.6409 

MSE (kWh) 1.1572 1.3364 1.2936 

RSME (kWh) 1.0757 1.1560 1.1374 

MAPE - - - 

R2 0.9267 0.9148 0.9230 
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4.3 Electricity Hourly Load Forecast Analysis 

Since all time-steps of the electricity load have a value greater than zero, normalized index such as MAPE 

was included in the metrics of evaluation. From the models training loss shown in fig 12 (a), sharp training 

loss and instability was experienced during training, but the performance is good as highlighted in figure 

12 (b). The gap between training and test loss is so insignificant. The plots showed that the training error 

decreases sharply after commencement of training before it became linear because of the model’s 

complexity, likewise the validation error. To validate this model, 168hrs (7days) data was used and the 

result showed increased test set does not necessarily affect the model performance. Table 7 showed that 

LSTM is considered a better model for electricity load since it has the least percentage error. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. (a) Training Loss on Electricity Load 

 

 

 

 

 

 

(b) Model Prediction Error on Electricity Load 
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Table 7. Result of Electricity Load Forecast Evaluation across different metrics 

Models and their performances on Electricity Load data 
 

LSTM  GRU ConvLSTM 

MAE (kWh) 0.8417 0.8693 0. 8615 

MSE (kWh) 1.4487 1.4305 1. 5281 

RSME (kWh) 1.2036 1.1960 1. 2361 

MAPE  7.8306 8.4633 7.9883 

R2 0.8505 0.8543 0. 8434 

4.4 Heat Hourly Load Forecast Analysis 

In analyzing the Heat Load, MAPE was not included in the metrics of evaluation to avoid infinite values 

brought about by zero or near zero values especially from the weather variables used in the model. As 

shown earlier in Figure 5 of the heat transfer analysis, temperature and heat load can at some certain 

periods have zero values due to seasonality. From the models training loss shown in fig 13 (a), training 

loss experienced a sharp drop immediately after initialization and tends towards linearity as the training 

progressed down the epochs. The model performance was validation with 168hrs test dataset as shown 

in Figure 13 (b). The evaluation report of Table 8 showed that GRU model outperformed others in all the 

metrics evaluated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. (a) Training Loss on Heat Load 
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(b) Model Prediction Error on Heat Load 

 

Table 8. Result of Heat Load Forecast Evaluation across different metrics 

 

 

 

 

 

 

 

 

 

 

 

4.5 24-Hours ahead PV Forecast Analysis 

For the 24hrs ahead forecast horizon, the last 24-hour historical data as well as the previous data before 

that i.e., 𝒚𝒕−𝟐𝟒, 𝒚𝒕−𝟐𝟓,.. were combined with the predicted weather data and fed to the neural network 

algorithm as input. Figure 14 showed the PV predictions for the period of 24hours against the real PV 

output generated. To further investigate the effect of the timesteps in the model performance, a 60hrs 

prediction was made using previous t+1 to t+60 as shown in Figure 15 and subsequently a 150hrs 

prediction as shown in Figure 16. It was discovered that model accuracy was reducing instead of 

increasing as the timestep increases. Juxtaposing this to the hourly forecast performance, the justification 

for best performance hourly predictions is made. 

Models and their performances on Heat Load data 
 

LSTM GRU ConvLSTM 

MAE (kWh) 1. 4312 1.1852 1.6240 

MSE (kWh) 3. 8943 2.3926 4.6223 

RSME (kWh) 1. 9734 1.5468 1.8327 

MAPE - - - 

R2 0. 9769 0.9772 0.9642 
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Figure 14. 24-hours ahead PV Prediction 

 

 

 

 

 

 

Figure 15. 60-hours ahead PV Prediction 

 

 

 

 

 

 

Figure 16. 150-hours ahead PV Prediction 

From the overall result analysis across the two horizons forecasted, it was discovered that LSTM 

performed best in PV and electricity load forecasting followed by ConvLSTM, while GRU outperformed all 

the tested models in Heat Load forecasting. Our forecast approach achieved error improvement of 12% 

over statistical time series models. Aside the performance improvement of the model’s prediction, it also 

demonstrated scalability, fast to train and can be augmented to provide outputs that are interpretable 

without considerable loss in accuracy. 
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To further confirm the accuracy of the model, 24 hours ahead PV and Electricity Load forecast was made, 

and the predicted values were plotted against the real values upon their availability a day after as shown 

in Figures 17 and 18. And an average of 97.29% accuracy was achieved. 

 

 

 

 

 

 

 

 

 

 

Figure 17. Predicted PV Output Vs real Load (24hrs) – 28/05/23 to – 29/05/23 

 

 

 

 

 

 

 

 

 

 

Figure 18. Predicted Electricity Load Vs Real Load (24hrs) – 28/05/23 to 29/05/23 
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4.6 Model Optimization 

To further consolidate the best performing model adaption to lag hours and features variation in 

predictions, the weather variables for the hour to be predicted (t) was removed from the last 24 hours 

used as lag variables. The supervised learning was framed with 4 lag hours and 8 features. A neural 

network with three hidden layers comprising of 120 nodes in the first layer, 160 nodes in the second layer 

and 120 nodes in the third layer is designed for training of the model. From the validation loss of Figure 

19, instability in training and testing was observed but the overall error did not increase rather reduced 

significantly. This showed the model robustness in learning the training data and accuracy in prediction. 

 

 

 

 

 

 

 

 

Figure 19. Loss for hourly prediction without weather variables for the hour to be predicted (t) 

 

 

 

 

 

 

 

 

 

 

Figure 20. Actual vs Predicted values using 1280 hours test data 
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5. Model Exploitation 

Flowchart for the effective deployment of the models is shown in Figure 21. Exploitation of these model 

required some software requirements’ satisfaction as Figure 21 block 1. It is expected that computer 

resources like Python SciPy development environment is installed, ideally the Python 3. Also, it is required 

that Keras (2.2 or higher) is installed with either the TensorFlow or Theano backend. This high-level 

TensorFlow API provides interface for machine learning with focus on deep learning specifically in the 

areas of computation, scalability, and cross-platform capabilities. This forecast is implemented using a 

famous Google cloud service for artificial intelligence developers and researchers called Google Colab 

with python 3 as the runtime type and TensorFlow processing unit (TPU) as the hardware accelerator. It 

can as well be implemented on on-premises as well as web-based interactive computing platform called 

Jupyter notebook.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Model Exploitation 

Block 2 showed the data used for model training, their type, format, and source. Meteorological data was 

acquired from Rebase Energy API between 15/10/21 to 13/10/22. Historical data was collated from HSBLL 

database within the same period. This dataset is available for Chalmers use but can be made available to 

other partners with some discussions. Three deep learning algorithms were used as shown in block 3, 
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and some input variables from both weather and historical data were used in the training of the model 

with rectified linear unit as activation function. Finally, block 4 showed the model evaluation metrics and 

the forecast results emanating from this model is used as inputs for EMS optimization. The models can 

be provided to interested partners upon request. 

5.1 Forecast Model Integration to EMS 

For GENTE work package 6.2, optimisation of building energy is focused on smart buildings control 

especially on the heat pumps control. Three of the following test cases were considered in the 

demonstration sites for heat pump control: case 1 – provision of local flexibility, case 2 – provision of 

optimal dispatch, case 3 – provision of other ancillary services. Therefore, the energy optimization 

technique leverages forecasted results from AI-based forecast models as inputs to the EMS optimization 

model. The forecast models are integrated in such a way that 24hours ahead forecasts with hourly 

timestamps are made to solve rolling horizon optimization problem and effect peak load 

control/reduction. The basic building block of the EMS optimization algorithm is the load balancing 

equation computed from the forecast results that shows the variation between energy expected to be 

produced and consumed in the next 24hours in the building at each timestamp. 

The outputs of the EMS optimization model based on the load balancing computation results set the 

charging/discharging set points for controllable loads such as energy storage (ES) and electric vehicle (EV) 

as well as operational start time for non-interruptible loads like washing machines and the dishwashers 

in the building to reduce the peak demands and minimize the total energy procurement costs. For the 

optimal dispatch of heat pump, BEMS control algorithm is combined with building demand forecast 

algorithm to provide cost minimization model. Figure 22 shows various components of the EMS and the 

objectives achieved on both controllable and non-interruptible loads in the demo sites using EMS. While 

Figure 23 shows how the optimization parameters used are combined for control operations. 

Figure 22. Building Energy Management Systems Components 
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Figure 23. Building Energy Management Optimization System 

5.2 Forecast Model Adaptability to New Dataset 

To ensure these models generalize well across different data sources or domains, some adaptive 

strategies like the use of domain-independent data pattern capturing, transfer learning, dropout, data 

augmentation and hyperparameter tuning were incorporated in their development stage, training, and 

testing. For instance, feature engineering strategy deployed was able to learn both temporal and spatial 

features in the data. However, when the developed model was tested on a data collected from another 

demo location (Alingsas hem) with slightly variation in climatic conditions compared to the HSBLL 

Chalmers, the results showed that the overall models’ performance remained consistence with slight 

variation. This variation can be ascribed to presence of noise or inconsistency in the data. It was 

discovered that discrepancies in the school holidays within the year under review brought about 

inconsistency in PV production and electricity load demand. There are also cases where PV production is 

higher that electricity load, resulting to negative values. So, proper data cleaning and augmentation is 

required to improve the quality of the data. 



Advanced load and generation forecast  

 

  

41 

 

6. Conclusion 

In this deliverable, PV generation, load and heat forecast were performed in short term i.e., 1-hour, and 

medium term i.e., 24-hour horizons using machine learning algorithms and mathematical identification-

based models. The forecasting leveraged real-time data from HSBLL, Chalmers University of technology 

PV generation, electricity load and heat demand and the results were compared with other state-of-art 

forecasting methods.  

For the 1-hour ahead PV generation and load demand forecasts, weather, calendar, and historical data 

were used as input to the neural network algorithms. The forecasts for this horizon illustrated high 

precision across different neural architectures. In 24-hour ahead PV generation horizon the best 

performance was achieved by the LSTM, however, the accuracy of the forecast decreases compared to 

one-time step prediction in 1-hour ahead prediction since the forecasting horizon is longer. Moreso, the 

model proved that it is not susceptible to weather variables variation when used in predicting a specific 

hour without including weather variables for that hour. This implies that the model is adaptive, hence, 

can be tested on any dataset. 

The load and heat demand data showed low correlation with weather features necessitating the use of 

only historical and calendar features in their modelling.  Different models were developed with the 

electricity load and heat load data, however, PV generation forecast has the best performance due to the 

similarity of attributes. Therefore, in the 1-hour ahead and in the 24-hour ahead horizons, the LSTM model 

and GRU model is selected, respectively. In both PV generation and electricity load demand forecast short 

term forecasts, the LSTM model illustrated high accuracy making it a possible choice for exploitation in 

WP6. On the hand, GRU is a better choice for Heat load prediction. 

It was shown in the PV generation forecast that the weather feature predictions’ accuracy can highly affect 

the forecast results, therefore, weather features from different NWP models including MetNo, ERA5, and 

ICON were also investigated in the PCA and feature engineering. All the NWP models resulted in the same 

weather features, however, the accuracy of the results differed. In the realization of the forecasts system 

either of these NWP models can be utilized with respect to their update cycle and delay delivery, this 

aspect will be further investigated in the demonstration of WP6. 

The use of spatial data from sky images either captured with cameras or from satellite images other than 

historical and meteorological data is the next direction for future PV forecasting. The reason is to model 

the movement of the clouds in 2D or 3D and then predict their evolution and consequently the PV plant 

power output for the very short term 
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