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Abstract— This paper develops lightweight and adaptive 

demand forecast models for a residential building integrated 

with solar photovoltaics using scalable and adaptive deep 

learning algorithms, i.e., long short-term memory (LSTM) and 

gated recurrent units (GRU). First, the forecast models have 

been trained using the real measurement data from a residential 

building. Then, the models have been used in case studies using 

the real-time data for two forecasting approaches: i) netload 

forecast; ii) disaggregated forecasts, i.e., forecasting the load 

and PV generation separately. The performance of the two 

forecasting approaches have been compared. The results from 

case studies showed that disaggregated forecast approach was 

superior (with an overall RMSE of 2.03 kW for the building with 

max demand of 10.53 kW) than the aggregated forecast 

approach (with an overall RMSE of 2.63 kW). Case studies 

results have also demonstrated that the models are scalable with 

more data, and are lightweights, hence, suitable for resource-

constraint devices. Although LSTM shows advantages in 

accuracy, GRU shows better scalability in terms of 

computational efficiency. The models can be utilized by various 

stakeholders, such as building owners, grid operators, etc., and 

can be adapted to other types of buildings.  

Keywords— forecasting, netload, lightweight, scalability, 

neural networks, deep learning, energy optimization 

I. INTRODUCTION  

A. Background and Motivations 

Demand forecasting for buildings is becoming one of the 
important elements in the energy management system of 
buildings. It is more so when more renewable energy sources 
(e.g., solar photovoltaics - PV), new types of loads such as 
heat-pumps, battery energy storages, electric vehicles, etc., 
are being integrated to buildings. Accurate load forecasts 
could lead to a reduction in both operational and maintenance 
costs for buildings. From the end-users’ perspective, reliable 
forecasts will help in daily energy management and 
scheduling with potential cost and energy saving. Therefore, 
there is need to develop advanced demand forecast model in 
such way that potential high volatility and uncertainty 
associated with energy loads and building integrated PVs 
could be addressed. Forecasting of load demand in PVs 
integrated buildings can be done by forecasting the netload or 
by forecasting load demand and PV production separately. 
The main question here is which approach would be better 
and in which conditions.  

B. Related Work 

Efforts have been made in load forecasting but not much 
in the direction of netload. Several forecasting strategies exist 

for individual components of the netload and the netload itself 
[1]. However, it is not clear whether aggregating several 
forecasts to obtain the netload is more beneficial or to 
aggregate the input data to forecast the netload with one 
approach directly. With netload, the knowledge of the 
appropriate time to apply balancing efforts between demand 
and supply is known. Fig. 1 is an illustration of a building’s 
netload. 

 Fig. 1. Representation of a building’s load and generation  

Recognizing the importance of individual electric users in 
grid planning and operation, [2] carried out a user level load 
forecasting to analyze integrated energy system influential 
factors and proposed a new user level load forecast method. 
[3] made a short-term individual households forecast and 
added up the resulting values as aggregated users in a large-
scale prediction. [4] used data-driven approach to decompose 
the netload for easy modeling and forecasting. A blend of 
these forecast strategies is implemented in [5], focusing on 
both single household and low aggregate levels loads. 

1) Individual components forecasting 
This approach implies forecasting netload indirectly, that 

is, forecasting PV production and electric load individually, 
then subtract the PV forecast from the electric load forecast. 
Achieving such a forecast requires a time series of PV 
production, electricity and netload, complemented with 
certain explanatory variables, such as weather. However, the 
stochastic nature and high uncertainty associated with these 
variables, makes it difficult for accurate prediction, especially 
for PV production [6]. In addition, calendar variables, such as 
the day type (workday or weekend), hour of the day, and 
season of the year and temperature, consumption behavior by 
the consumers, etc., have strong influence on electricity load 
forecast.  

Several forecasting techniques, such as in [7-9], had been 
deployed in electric load forecasting, covering processes of 
problem formulation, data transformation to supervised 
learning, and feature learning. Short-term forecasting strategy 
to learn residents’ consumption behavior has been introduced 
in [10, 11], while [12, 13] predicted a building heat load using The work leading to this paper is part of the project GENTE funded 

by the framework of the joint programming initiative ERA-Net Smart 
Energy Systems with support from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 883973. 



an integrated machine learning to address the flexibility 
between the use of district heating systems and heat pumps. 

2) Netload forecasting 
Netload forecast provides the knowledge of the difference 

between energy demand and PV production and helps ensure 
that sufficient energy is made available even when PV 
production is not available. The motivation for netload 
forecast is the sparsity of existing research in this area, 
particularly at residential and low-aggregate levels. This 
necessitates a more in-depth investigation to be carried out. 
Spatial relationships between various residential building 
loads should be considered and the forecast targets low-
aggregate level netload. 

Aggregated strategy directly forecasts the netload, i.e., the 
difference between the electricity demand and the electricity 
supply from renewable energy sources [1]. Similar model 
configurations to individual forecast are used here to justify 
their comparison. The netload is represented by (1). ����  = D − S, (1) 

where ����  is the netload, D is the electrical load at user or 
low aggregate levels, and S is the electricity supply from 
renewable sources. The aggregated value of all the individual 
renewable energy generators in the system makes up the 
expected renewable energy supply. The forecast is performed 
on the time series after subtracting the supply from the 
demand. The assumed advantage of the strategy is that more 
aggregation leads to a time series that is simpler to forecast as 
it fluctuates less with fewer extreme values and more explicit 
recurring patterns [1].  

One disadvantage of this aggregated strategy is that the 
relationship between netload and exogenous variables, such as 
the weather, might not be straightforward as the weather 
primarily influences the output of the generators and not the 
netload itself. Hence, there is a need to closely investigate the 
weather impacts on netload. It is important to note that almost 
none of the reported netload forecasts in literature [1-4], [7-
11] made a forecast using real-time data. The models were 
only tested on historical data. Moreover, the methods in 
literature [2-4], [14-15] focused more on model’s efficiency 
in terms of accuracy without considering how deployable they 
can be in the real-world. High computational complexity of 
forecast models, especially neural networks models result in 
high resource utilization making their deployment difficult. 
This is a challenge which needs to be addressed.  

C. Main contributions and organization of the paper 

 To address the above presented challenges in load 
forecasting, this paper proposes an hourly netload forecast 
using neural networks algorithms. The choice of neural 
networks is due to its robustness to noise and its ability to 
capture complex and non-linear relationships in a time-series 
data. The chosen forecast horizon is best suited for real time 
control, ramp rate control, variability management as well as 
demand response scheduling in a building. Factors affecting 
the forecast results are investigated using the proposed model, 
the models’ scalability and adaptability to new data, as well as 
problem of high resource utilization (due to complexity) 
associated with neural networks algorithms are also 
addressed. The main contributions of this paper can be 
summarized as follows:  

• Development of an hour ahead load forecast models for 
both netload forecast as well as individual forecast, with 
light weight, low error, and high computational speed 
using scalable and adaptive deep learning (DL) 

algorithms. The models are thus suitable for on-device 
implementation in applications such as real-time energy 
monitoring and management. 

• Validation of the models using hourly data from a real 
residential building, HSB Living Lab and comparisons of 
forecasting approaches, netload forecast versus individual 
component forecast (or disaggregated forecast).  

• Analysis of the effects of weather and other external 
factors on the forecast results.  

This paper delves properly into the conversation on the best 
option between individual and netload forecast by testing 
both. Two components such as PV and electric load were used 
in the proposed individual forecasting strategy.   
This paper is organized as follows: Section I gives the 
motivation for the study, general overview of netload and 
individual load forecasting, the existing research efforts and 
the main contributions of this paper. The proposed forecast 
methodology was discussed in Section II. Section III presents 
the case studies and results. The conclusions and suggestions 
for future work are presented in Section IV. 

II. PROPOSED FORECASTING METHOD 

In this study, efforts are made to analyze the PV and 
electric load characteristics of an integrated energy system in 
relation to the netload. Netload can be forecasted using (2) 
based on the energy balance within an integrated energy 
system having both PV, electrical load, and battery storage. 

������� =  P������� − �P�����   − P����������� (2) 

where ����������� =  P����������� − P�������� 

 Firstly, a regression-based approach was used to predict 
PV output considering weather conditions especially solar 
irradiance as the most influential factor. The electric load on 
the other hand is predicted considering the influence of 
factors such as day type (workday or weekend), hour of the 
day, and ambient air temperature on the actual electricity 
load.  

������. =  ���,  , !����, "���; $� (3) 

where ������.  denotes the predicted PV, �  is a neural 

network function parameterized by $ (weights and biases of 
the neural network), C is the cloud-cover, H relative humidity, 

!���� is the ambient air temperature at time t, and "��� is the 
solar radiation at time t. 

�����_����. =  ��&, ℎ, !����; $� (4) 

where �����_����. is the predicted electric load, D is the 

day type (D = 1 for workdays and D = 0 for weekends), h is 

the hour of the day, !���� is the ambient air temperature at 
time t. Applying a multi-input single-output (MISO) neural 
networks on these influential weather/calendar variables 
firstly transforms their features linearly before passing them 
to the activation function. Therefore, the predicted electric 
load (4) is expanded further, and could now be expressed as:  

�����_����. =  (�)*. +&, ℎ, !����, "���, + .*�. )/ + ./ (5) 

 where W is the weight matrix, b is the bias vector and ( is 
the activation function. Netload is predicted by combining the 
influential factors for electric load and PV, expressed as: 

����_����.  =   ��&, ℎ,  , �, "���, !����; $� (6) 

A. System framework for the forecasting model 

The forecast models’ framework here comprises three 
stages as shown in Fig. 2. Firstly, a decomposition algorithm 
was developed to separately collect electric load from the 



integrated energy system, as well as the historical weather data 
through application programming interface (API). Secondly, 
the disaggregated components and netload were trained 
individually using a lightweight model (achieved with an 
improved squeeze layer technique of [16]). At this stage, a 
baseline model is obtained. And the training error for the 
models were found to be less than two percent, which is 
satisfying. Finally, the base learners were optimized and made 
to make predictions using hourly data collected through API, 
from HSBLL and Numerical Weather Predictions (NWP) 
sources. A complete 1year data split into training and testing 
was used in training the deep learning algorithms, while 7 days 
was used for final prediction. The scalability of the models is 
defined in terms of their performance to the increase in dataset 
size, time and space complexity and deployment environment. 

Fig. 2. Framework for netload forecast implementation 

B. Forecast Horizon 

A short-term forecast was leveraged. An hourly forecast 
for 7 days was tested. 
Hourly forecast: This prediction is based on a two-step 
modelling chain, where the first step is the prediction of 
meteorological variables using Numerical Weather 
Predictions (NWP) [17]. Two deep learning algorithms were 
used: LSTM [18], GRU [19]. The algorithms were chosen 
because they accept multi-input-variables and can give single-
output prediction that catches the nonlinearity in input 
variables. This multi-step hourly prediction for 24hrs was 
made from time step t+1 to t+24, at t = 1hr. For n-step forecast 
ahead, the vectors of A, B, C, D, and K in (7) and (8) can be 
described in a state-space form [20].  
0�1* = 20� + 34� + 56� (7) 
7� = �0� + &4� (8) 

where, 4� is input vector, 7�  is the output vector, and 0� is the 
state vector.  

Unfortunately, the historical data of the previous hours' 
actual values are not always available for all timestamp of the 
24-hour horizon. Therefore, the “Walk-forward” optimization 
approach [21] that leverages the last predicted hour for the 
next timestamp prediction for 24-hour period was used.  This 
approach is crucial because it  enables the model performance 
to be assessed by recursively augmenting the training data 
with recent observations and re-evaluating the model over 
extended horizon [14]. 

C. Model Configuration  

 Two deep learning algorithms, LSTM [18] and GRU [19], 
with different model configurations and parameters were used 
in learning the characteristics of the training data. LSTM 
model has 250 neurons (100 at first layer, and 50 neurons at 
each hidden layer) and 1 in the output layer, with filter output 
size of 64, kernel size of (1, 3), dropout of 50% of the layers. 
GRU consists of a similar network but with only 200 neurons, 
filter output size of 200, dropout of 20%, and a stochastic 
optimization gradient (Adam). An improved version of [16] 
that compressed the networks’ hidden layers was used in 
reducing the models’ size i.e., making it lightweight.  

D. Test Scenarios 

 Since the major objective of the study is to determine the 
most effective forecast method, a test using five different 
forecast models shown in Table I (presented in Section III), 
was carried out. Disaggreg.1 and aggreg.1-4 are test cases. 
The test assessed the effect of forecast data type (historical and 
real-time) and time, influence of weather and calendar 
variables, and other external factors to prediction outcomes. 
The test started by using historical data for prediction without 
recurse to the stage 3 process (involving optimized learner, 
and hourly data for PV, electric load and weather) as depicted 
in Fig. 2 of the framework. The performance of these base 
learners was assessed with an increase in the test sets’ time 
scale. As soon as performance of the base learners is 
ascertained, the test is completed by optimizing the algorithms 
with hourly data, and weather and/or calendar data as the case 
of PV production and electric load. 

The relationships between aggregated/disaggregated 
netloads and weather/calendar variables were analyzed using 
feature importance test. Pearson correlation analysis showed 
that weather and calendar variables in disaggregated netload 
have higher correlation coefficients in relation to their 
respective targets (i.e., actual electric load and actual PV 
production) than that of the aggregated netload. The final 
prediction of the aggregated netload across the tested models 
incidentally was affected by this correlation drop when 
compared against disaggregated netload. Apart from 
correlation drop, aggreg.4 that used only historical data as 
shown in Table I, has the worst performance. This goes to 
show that other models understand and predict variations in 
netload better with comprehensive input data comprising of 
weather and calendar variables. 

III. CASE STUDIES: RESULTS AND DISCUSSIONS 

The disaggregated forecast versus netload forecast 
approaches are demonstrated using a case study using data 
from a real residential building in Sweden, a HSB Living Lab.   

A. Description of Case Studies 

The dataset for this paper is acquired through API from 
HSBLL’s energy system, while the meteorological data is 
acquired from Numerical Weather Predictions (NWP) [17]. 
The data included hourly electricity load, PV output and local 
weather data containing seven variables collected from 
00:00:00 hours of 15th of October 2021 to 23:00:00 hours of 
13th of October 2022. HSBLL is a smart residential building 
consisting of 29 apartments. The building contains 2 electric 
vehicle chargers with two 3-phase outlets, a heating system 
that is composed of 2 heat pumps and 3 hot water storage 
tanks. It also contains a washing machine, dish washer, 
tumbler dryer and other non-controllable loads. The actual PV 
and electric load data are used as the targets of the individual 



prediction models. The measured netload data is used as the 
target for the direct netload forecast. All model inputs and 
targets are standardized to be within the range (0, 1). The 
forecast horizon is 1-hour ahead and previous 24-hour 
observations were used as inputs to the models.  

Applying (1) on HSBLL dataset for July 2023, the netload 
for building is obtained. Exploratory analysis to ascertain the 
distribution of the loads as depicted in Fig. 3 showed that 
variation between individual load and netload decreased 
significantly around the hours 48 – 72, 504 – 552, and 576 – 
600 corresponding to day 2 – 3, 21 – 23, 24 – 25, respectively. 

            Fig. 3. PV production, Load and Net-Load Distribution for July 2023 

B. Forecast Evaluation 

 Training and testing of the models’ performance was done 
using the entire one-year historical data, but predictions 
analyzed here are for 7 consecutive days, i.e., 1-week 
predictions between April 11th to 18th 2024.  

Two major standard error metrics: Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE) were used for 
model evaluation. These metrics are the most suitable and 
commonly used metrics for neural networks models 
evaluation. Both error metrics use the same scale as the 
measured data, which implies that the error is of the same unit 

with the predictions and can range from 0 to ∞. 

1. RMSE measures the average magnitude of the error. It is 
the square root of the average of squared differences between 
prediction and actual observation. 

89": = ;*
< ∑ <

�>* �0� − 7��/, (9) 

2. MAE measures the average magnitude of the absolute 
errors in a set of predictions, without considering their 
direction. It is mostly used for regression tasks, especially for 
accuracy evaluation.  

M2: = *
< ∑ |0� − 7�<�>* |                                               (10) 

where 0�   is the observed data, 7�  denotes the predicted 

data, and A is the number of observations.  
Table I shows the results analysis of the models tested, 

while Table II and III show the results regarding the 
lightweight and scalability, respectively, demonstrated on 
both aggregated and disaggregated forecast approaches using 
two algorithms. Table III shows no significant difference in 
the models’ accuracy as the training data size is increased. 
Based on Table I, the disaggregated approach using LSTM 
achieved lower error because it leveraged finer granularity and 
detailed modeling of individual components of netload. 
However, GRU outperformed LSTM in aggregated forecasts 
tested. The differences in RMSE and MAE across the input 
variables of Table I indicate the importance of calendar 
variables in netload forecasting. As shown, Aggreg.1 model 
was good in netload because it captured the effects of 
historical patterns, weather variations, and calendar-related 
behavioral patterns. However, it is important to state that the 
results shown in Table I are highly dependent on the accuracy 
of the weather variables used in the forecast model training. 

TABLE I.  PERFORMANCE ANALYSIS BASED ON THE TEST CASE 

Metrics 

Disaggreg.1 

Input: 

weather, 

historical PV, 

historical 

Electric load, 

Calendar 

Aggreg.1 

Input: 

weather, 

historical 

Netload, 

Calendar 

Aggreg.2 

Input: 

weather, 

historical 

Netload 

Aggreg.3 

Input: 

historical 

Netload, 

Calendar 

Aggreg.4 

Input: 

historical 

Netload 

RMSE (kW) 
LSTM 

1.2057 1.8008 3.0928 2.5718 3.9898 

RMSE (kW) 
GRU 

1.2932 1.7312 2.97705 2.3984 3.7107 

MAE ((kW) 
LSTM 

0.8438 1.2976 2.4078 1.9751 3.1584 

MAE ((kW) 
GRU 

0.9251 1.2663 2.4155 1.8522 2.8856 

TABLE II.  MODELS’ LIGHTWEIGHT DEMONSTRATION 

TABLE III.  SCALABILITY DEMONSTRATION ON INDIVIDUAL LOADS 

Scalability 

Metrics 

LSTM GRU 

6-month 

data 

1-year 

data 

6-month 

data 

1-year 

data 

Accuracy (%) 90.70 92.00 90.80 91.00 

Time of train (s) 11.60 16.87 4.66 10.16 

 
Lack of access to datasets made it difficult to compare this 

proposed forecast approach with similar methods  in literature, 
most especially [15] which reported a RSME of 7.967 kW. 
However, on comparing with statistical methods tested on the 
same dataset, an improvement of 12% over statistical methods 
was achieved. Apart from the performance improvement, it 
also demonstrated scalability, fast to train with compressed 
model size without a considerable loss in accuracy. Moreover, 
the models with weather variables proved not susceptible to 
weather variation when used in predicting a specific hour 
without including weather variables for that hour. This implies 
that the model is adaptive, hence, can be tested on any dataset. 
However, inclusion of only calendar variables significantly 
affected the outcome of netload prediction. It captured the 
temporal variations and behavioral patterns in electricity 
consumption, ultimately leading to more accurate forecasts. 

Fig. 4 shows the 7-day ahead forecasts between the 
aggregated and disaggregated netload against the actual 
netload. Disaggregated forecast performs better than 
aggregated when compared with the actual netload and 
showed it can predict the peakload. Disaggregated forecast has 
a variation of 11.5% against 27.11% recorded in aggregated.  

Fig. 4. Comparison of forecasts against actual netload 

Scalability of the model was tested using the models 
accuracy and time-of-train as metrics over different training 
data size and computing infrastructure (on-premise, cloud).  

 Aggregated 
Disaggregated 

PV  Elect. 

Computational time 
Training 16.87s 0.75s 14.89s 

Forecast 0.81s 0.1s 0.90s 

Model size 
LSTM 2.9332 MB 

GRU 0.5269 MB 



Figs 5 and 6 show the forecasting error distribution versus 
normal distribution for disaggregated and aggregated netload 
forecasts, respectively. As can be seen, the error distribution 
in Fig. 5 is relatively more concentrated around the mean (0), 
compared with Fig. 6. This means lower variance. Secondly, 
the peak of the forecasting error distribution in Fig. 5 aligns 
well with the peak of the normal distribution, though it has a 
higher density. Looking at the error alignment of Fig. 5 with 
the normal distribution curves, it has a significant overlap. The 
error distribution of Fig. 6 is wider and less peaked compared 
to Fig. 5. This wider spread indicates a larger variance, and the 
lower peak shows a flatter distribution. The error of Fig. 6 
does not align as closely with the normal distribution curve 
compared to Fig. 5. The increase in deviations, particularly on 
the left side, indicates skewness in the error distribution. 

Fig. 5. Error distribution for disaggregated forecast 

Fig. 6. Error distribution for aggregated forecast  

C. Factors affecting the forecast results  

 Further investigation to understand the reason for the 
underperformance of aggregated netload showed that weather 
and calendar variables influence is a major affecting factor. 
The decrease of these variables in the correlation test is a 
strong proof. The highest decrease was recorded in solar 
irradiance, hour of the day, temperature, and relative 
humidity. A further probe showed that these variables are 
strongly correlated with PV production. Also, the export 
power that occurs when PV production is more than the 
electricity demand (circled), as can be seen in Fig. 3, is another 
factor. 

IV. CONCLUSIONS 

 This paper developed load forecast models using deep 
learning algorithms to determine the most effective 
approaches between disaggregated and aggregated netload 
forecast. The case studies results showed that disaggregated 
forecast is better than aggregated (netload) forecast. The 
performance of disaggregated forecast was found to be linked 
to weather and calendar variables effects, and the power 
export that occurs when PV production is higher than the 
electricity demand. The developed forecast models 
demonstrated scalability, and their lightweights make them 
deployable on resource-constraint devices. They also proved 
that they are adaptive to new data and can handle noise. The 

models can be adopted and extended to various types of 
buildings and could be used by building owners by integrating 
them in building energy management systems, as well as by 
the grid operators to predict the demands by grid users to 
better plan for grid operation and congestion management. 
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